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Phase diagram of hard spheres confined between two parallel plates
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Institut fir Theoretische Physik Il, Heinrich-Heine-Univergitausseldorf, Universitesstrasse 1, D-40225 Bseldorf, Germany
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A hard sphere system confined between two parallel hard plates is investigated theoretically. Using extensive
Monte Carlo computer simulations, the phase diagram is calculated for the whole range of densities and plate
separations ranging from one to two particle diameters. There occurs a strong first-order fluid freezing transi-
tion and both very weak and strong discontinuous phase transitions between different crystal structures,
namely, layered, buckled, and rhombic crystals. The results are compared with predictions from free volume
theory, and a semiquantitative agreement is found. All predicted transitions should be experimentally observ-
able in confined suspensions of sterically stabilized or highly salted charged colloidal particles.
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PACS numbdrs): 82.70.Dd, 64.70-p

[. INTRODUCTION parallel glass platesl5—-20, for which our model is particu-
larly designed. The glass plates can be regarded as being

Freezing and melting are phenomena well known fromsmooth on the mesoscopic scale of the colloids. There ap-
everyday life. Much theoretical as well as experimental workpears a competition of different length scales, namely, the
has been devoted to the understanding of the phase transitiéfical particle extensions and the dimensions of the confine-
from a disordered liquid to an ordered, regular solid. Thement, which may be commensurate or incommensurate. This
freezing transition can be observed in quite different physicaleads to multilayered crystals of triangular or square symme-
systems, including atomic and molecular systems like iron ofy. Increasing the plate separation distance, the following
water, but also in colloidal suspensions. Usually, colloidalsequence of crystalline structures was observed experimen-
particles appear in a disordered phase constituting a fluid of@lly [16—18:

a mesoscopic length scale. Under appropriate conditions, an
ordering of the colloidal particles is also possible, as docu- fluid— 1A —20—-2A—=30—---. (1)
mented in 1909 by Perrif].

Many theoretical studies on freezing focus on bulk prop-The symboh/A denotes crystal layers with triangulaialso
erties, neglecting any surface effects. But real systems armglled hexagonalsymmetry, equivalent to the structure of
generically limited in space. Therefore the effect of confine{(111) planes in a fcc crystah. Layers with fourfold rota-
ment on phase transitions is an important issue to address. tional symmetry, equivalent td. 10 planes, are denoted by a
fact, this represents an active area of current research. im] symbol. The experiments have mainly been carried out
particular, there exist studies dealing with all phase transiin a wedge geometry. An advantage of the wedge geometry
tions conceivable for a confined simple liquid. First, theis the continuous range of plate separation distances. The
liquid-gas transition in confining geometry which is also drawback, on the other hand, is the introduction of an addi-
called capillary condensation, was investigated; see, e.gtional degree of freedom, namely, the wedge angle. Only in
[2,3]. There have been recent studies on a critical fluid conthe case of small wedge angles can the plates be regarded as
fined in between plates focusing on boundary critical phedocally parallel.
nomena and the Casimir effdet]. The location of the freez- Quite early, there were also “mazelike” patterns ob-
ing transition in a capillary5,6] and in porous material§¥’]  served[21] that do not fit into the simple sequent®. One
was studied. Finally, the shift of the dynamical glass transi-main result of the present work is thare phases are ther-
tion in confining geometry with respect to the bulk glassmodynamically stableand that their succession is more com-
transition was also recently measurf8] and calculated plicated, depending sensitively on the density and plate sepa-
[9,10]. We finally mention some peculiar recent results forration distance.
confined nearly two-dimensionéD) liquids: First, their dy- Let us briefly mention further setups where nearly two-
namics was shown to be close to hydrodynamics with approdimensional fluids are realized: First, thin films of colloidal
priate boundary conditiond11]. Second, stratification- suspension can also be produced by spreading the suspension
induced transitions were found by computer simulationsover a solid substrate. For different experimental investiga-
[12], and the instability of a 2D crystal with respect to buck- tions of ordered colloidal structures on solid substrates, see
ling waves was demonstratéti3,14). [22-24. Second, at an air-water interface, colloidal particles

The present work deals with freezing in confined geom-can be trappef25]. The emerging soft repulsive interaction
etry, with a focus on colloidal suspensions confined betweewnf aligned dipoles leads to formation of a two-dimensional

(2D) crystal[26,27]. Last, freezing in few layers of a dusty
plasma has been studig@8—3Q and considerable attention
*Also at Institut fir Festkaperforschung, Forschungszentrum Ju has been devoted also to the behavior of confined 2D elec-
lich, D-52425 Jiich, Germany. trons; see, e.g., Reff31-34.
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FIG. 1. Hard spheres of diameter confined between parallel ANT
hard plates with areA and plate separation distankle The corresponding reduced pressures are
The aim of our paper is to study theoretically the phase Piat=0°Pat, 7
diagram of the simple model of hard spheres confined be-
tween hard plates. Despite its simplicity, the resulting phase Prrans 0 Ptrans: 8

diagram is rich, allowing for the stability of fluid as well as
different crystalline phases. The actual crystalline phases cahhe wall theoreni38] relates the transversal pressure to the
be more complicated than a simple sequencaAfor n(] one-particle density fiel@(r) as follows:
layers. In particular we find stablickledandrhombiccrys-
tals. Our results are based upon Monte Carlo simulations and
a simple free volume theory. Parts of the results have already
been published elsewhefa7].

The paper is organized as follows: In Sec. Il, we introduce BPyan= p(=hi2). (10)
the model and discuss its limiting cases. In Sec. lll, we de-
scribe the Monte Carlo simulation technique. The results ar®hase coexistence implies the equality of the lateral pres-
presented in Sec. IV. Furthermore, in Sec. V, we discuss thgures and the chemical potentials in the two coexisting
free volume theory. Finally, Sec. VI is devoted to concludingphases. Note that the equality of temperature is trivial for

— 1
p(2)=zf dx dy p(r) 9

remarks. hard bodies.
Il. MODEL: HARD SPHERES BETWEEN HARD PLATES B. Bulk limits of the model: 3D and 2D
A. Model and notation In the limit h— o at fixed densitypy, we encounter the

3D bulk hard sphere system which undergoes a strongly
first-order freezing transition. The coexisting fluid and solid
volume fractions arey;=0.494 andzn,=0.545. The crystal-
line structure of the solid phase is close packed, although it is
unknown which close-packed structure is the thermodynami-
cally stable one.

As a different limiting case foh—«, one can keep the
0 if r=co position of one plate fixed, and remove the other plate to
(2)  infinity. Then the hard sphere system at a single wall is ob-

tained. This situation represents the basic inhomogeneity for

hard spheres, as no additional parameter with respect to the

The confining hard walls are modeled by an external pcjter'E)ulk system is introduced. One can study density profiles

Our model system consists bf hard spheres of diameter
o confined between parallel hard plates with afeand gap
thicknessH=(h+1)o, such thath=0 corresponds to the
2D limit of hard disks; see Fig. 1. The pair interaction po-
tential between particles with position vectorandr’ de-
pends on the magnitude=|r—r’|, and is given by

V(r)=[

o if r<o.

tial [39,40 and correlation functions[41] within density-
0 if —ho/2<z<+ho/2 functional thepry or integral e_quation thedA2,43. As con- _
Vey(r)= ) ©) cerns the solid phase, density profiles and surface tensions
% otherwise, have been calculated by density-functional thephf]. A

) _ precrystallization effect induced by the presence of the wall
wherez is the component of the vectoperpendicular to the a5 found[44—46, showing the wetting of a single wall by

plates. The total potential energy is close-packed111) fcc planes.
N The fluid phase in slab geometry was investigated in the
Voo (1 . ):Z grand-isostress ensemté7] by computer simulation, and
pofTLy -+ - INJTm correlation functions and density profiles were calculated
(4)  within density-functional theorj48]. Also the freezing tran-
sition between plates was investigated focusing on large
Since temperature is irrelevant for excluded-volume interacplate separationf49]. Dynamical aspects were studied in
tions, the only thermodynamic quantities are the reduced paRefs.[50,51].
ticle densityp,=No3/(AH) and the effective reduced plate  The 2D case of hard disks is obtained by letting:0 at
separatiorh. In the limit h—0 the third dimension can be fixed densitypy. While it is established that the 2D hard
neglected, and we end up with 2D hard disks. In the oppositdisk system undergoes a freezing transitionlike the 1D
caseh—x, the effect of the confining plates vanishes, andhard rod mode| the nature of two-dimensional melting is a
the 3D bulk hard sphere system is recovered. current area of researdisee Ref[52] for a review. Basi-
With the Helmholtz canonical free energy denotedryy cally, there are two main scenarios: Similar to the 3D case,
we define two different pressures of the systems: there could occur a first-order freezing transition with a finite

N N
j;lvuri—r;m; V(i)
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density jump. Alternatively there is the celebrated Kosterlitz- BPiat T h? )

Thouless-Halperin-Nelson-Young scenario, consisting of =1+ 5 pu(1+h)| 1= =/+0(pp), 17

two continuous phase transitiofi®., with vanishing density H

discontinuity from the liquid to the so-called hexatic phase, h Bp h2

and a further phase transition from the hexatic phase to the _ [ruans_, mpu(1+h)—=+0(p?). (18

2D crystal. Although recent studies are still controversial h+1 6

[63-55, there is now more and more compelling evidence

for the fact that the hard-disk freezing transition is first order 3. Close packing

[56,57. As described above for the 2D and 3D bulk limits, the

hard sphere system freezes into respective close-packed
C. Low- and high-density limits of the model structures. Considering hard spheres confined between plates
1. Ideal gas it is therefore natural to ask for the close-packed structure

o i ) ) ] o which provide the high-pressure limit of our model. This was
The statistical physics dfi noninteracting particles inside ¢gonsidered by Pansu, Pieranski, and Pierafagi

a given volumeV is governed by the number density and the Stackingn layers of square or triangular symmetry gives
thermal energkgT alone. We show how the results for two cangidate close-packed structures at discrete values of plate
and three dimensions are recovered as special cases if t8gparation distance. These packings can be considered as
particles are confined in a volume Wlth _arAaand height  glaps of a(close-packep3D fcc crystal. The slabs are paral-
ho=H-o. The free energy per particle is lel to lattice planes with small indices as ttEL1) direction
(here called triangular layer)) or (110 direction (square

3
fiu=kgT In(&) —1/, (11) layer, ). For n stacked square layers the density at
Ahg discrete plate separation distan¢ess given by
where A = \h%/2emksT is the thermal de Broglie wave- V2
length. The ideal pressures are pp(nd)= ————, (19
1+(\2—1)/n
IBpIat:PH ’ (12)
h(nd)=(n—-1)/y2. 20
et . (nD)=(n—1)/2 (20
BPrans= h PH: (13 In the case of triangular layers, the values are
The prefactor k+1)/h is due to the definition of the density V2
pu - The 3D limit is obtained by lettindh— o, such that pu(NA)y= ———, (21
pap=N/(Ahg) is kept constant, 1+(+/3/2-1)/n
Bf’= lim Bfiy=In(pspA®) - 1. 14 h(nA)=Z(n—1). (22)

h—soo

For the case of a 2D classical ideal gas, a regularization is Of course, in the limit ofn—c both solutions approach
needed. We leh—0, while keeping the 2D area density the density of a close-packed 3D fcc crystal, namely,
fixed, p,p=N/A, and subtract the diverging contribution to pn( fcc)= \J2. For small values ofi, these structure are ex-
obtain pected to be close packed, but for5 distorted triangular
layers may be more dense than tiig crystal, even at plate
separationfi(n1).

Quite surprisingly, there are several crystalline structures
known to exist that interpolateontinuouslybetween square
and triangular layers. One complete sequence of close-
packed structures connecting\lvia 2] to 2A is depicted

Virial coefficients for hard disks are known analytically in Fig. 2. The crystal interpolating betweem\land 21 is
and numerically{58,59. In an inhomogeneous system, the called the buckling structure, that betweell 2nd 2A the
virial coefficients becoméunctionsof the external param- rhombic phase. The densities of these sphere packings were
eters, in our case on the plate separation distémoom-  calculated in Ref[60]. For the buckling structureb( inter-

puting the second virial coefficient yields the first correctionpo|ating between A and 27 for 0<h<1//2~0.707, the
to the excess free energy. Written in reduced units, the viria§jensity is given by

expansion of the excess free energy per particle for the case
h<1 is explicitly given by

2
hy= ——————.
h2 pcH ——
ﬁfex:gPZDUZ(l_E)a (16) (h+1)y3-4h

A
Bt2P= Iim[ﬁfid—ln = =ln(p,pA%)—1. (15

h—0

2. Virial expansion

(23

The rhombic crystal ), which is close packed for
wherep,p=N/A. The virial corrections to the pressures de-0.707% \1/2<h=< J2/3~0.816 interpolating between [2
fined in Egs.(6) and(5) are and 2A layers, has a density
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FIG. 3. Shape of the simulation bota) parallelogram in the
lateral planejb) 3D view of the box;(c) periodic boundary condi-
tions, and identification of boundary points.

pared in order to check for sufficient equilibration. As a con-
sistency check, we also used the single occupancy cell
method[67,68 (see alsq69]) for h=0.85, finding the same
phase boundaries.

Periodic boundary conditions in lateral direction are
implemented using a parallelogram-shaped box that varies its
shape during the simulation. This is necessary to make it
possible for any crystal structure to fit in the simulation box.

FIG. 2. The various close-packed structures. Left columfy; 1 The ground area of the simulation box in the latersl
linear buckling, zigzag buckling. Right columnf®, linear rhom- plane is a parallelogram with angler, aspect ratio
bic, zigzag rhombic, 2 (from top to bottom. Spheres from the q=L,/L,, and areaA=L,L, see Fig. 8). Perpendicular
lower layer are dark shaded, while spheres from the upper layer aig the parallelogram the box has the heighiA 3D view of

transparent. the simulation box is plotted in Fig.(8). The box aspect
ratiog=L,/L, and anglex vary in the course of the simu-

4(1-h) lation to allow for a structural rearrangement of the system.
pcAlh) = ——=. (24)  After each system updatene attempted move per particle

3—4h one box Monte Carlo move is done. This collective move

consists of the following steps: First, one generates randomly
Rew trial valueyy’ anda’. Then the box and particle coor-

dinates are updated to fit into the new box shape. Finally, the
nonoverlap criterion is checked and, depending upon the re-
sult, the new configuration is accepted or rejected. There is a

Here we note that buckling structures appear not only as
perturbation of a 2D crystdll3,14], but are present in quite
different physical systems, as amphiphilic membrajgds-

63] or Langmuir films[64]. Both the buckling and the rhom-

bic structure are highly degenerate. Each of them may appea&queezing” move, that changegat constantr and there is

in three form;: The_ strlptly periodic linear and zig-zag struc-a “shearing” move, that changes the angl@t constant box
tures are depicted in Fig. 2, but a random alternation of bowéspect ratiag

is also conceivable and does not cost packing volume. The While the transversal pressure is obtained via the wall

situation is quite similar to that in three dimensions, where, . - .

) . theorem, the lateral pressure is efficiently calculated by using

we have the degeneracy of close packing with respect to th - . A i

i the probability density of a successful infinitesimal rescaling
stacking sequence.

As regards larger plate separations witk 3 layers, the of all lateral coordinates with unchangecdoordinates. See

problem of the densest sphere-packing becomes increasing'lb‘)f)pendlx A for more technical details.

complicated as many other candidate packings have to be
taken into account. First, there are the two prism structures IV. MONTE CARLO RESULTS
[65,2Q interpolating between andn+ 1 square layers, and
interpolating betweemA and (h+1)A. The latter case re-
duces fom=1 to the buckling structure. Second, there is the In Fig. 4 the Monte Carlo data for the phase diagram is
n-layered rhombic structure, that interpolates betwagh shown as a function of densipyy and plate separation dis-
andnA layers. Third, there is a structure interpolating be-tanceh [37]. The different system sizes are denoted by dif-
tweennA and 3 A via division of eachA layer into three  ferent symbols, indicating that the dependence on system
triangular sublattice¢see Fig. 11a of Ref60]). This struc- ~ size is only weak. Altogether there are six thermodynami-
ture is not close packed for theAk3A transition. cally stable phases: fluid phasé)( one triangular crystal
layer (1A); buckling phasgb), two square crystal layers
(200); rhombic phase r(), two triangular crystal layers
(2A). At the left (low-density side, the phase diagram is
We performed a standard canonit& T ensemble simu- enclosed by the fluid phase; at the righigh-density side it
lation [66]. The number of particleBl ranges typically from is limited by the close-packed states residing on the dashed
N=192 to 4608 to check systematically for finite-size ef-line given by Eqs(23) and(24). Between the fluid and the
fects. Particle coordinates are analyzed to obtain the laterédrbidden region there are five crystal phases, whose relative
pressure as a function of density, and hence the equation sfabilities are determined by the density and the plate sepa-
state, from which phase coexistence is determined by Maxration distance.
well's construction equating lateral pressures and chemical In Fig. (5) the phase diagram is shown using the lateral
potentials. Compression and expansion runs have been compressure instead of the density as free thermodynamic vari-

A. Phase diagram

[lI. MONTE CARLO SIMULATION TECHNIQUES
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1 e extrapolation. The density discontinuity is larger than for
i \j\m 2A AN freezing into the triangular layer.
e N (iv) 20-b, 0.57<h<0.71. By accident the triple point
08r ;/1;/" 200 wJr | (f,20,b) lies within statistical uncertainty at the same value
‘T;I‘ A/.\4> 7 of h=0.57 as the triple pointf(1A,b). Therefore we can-
0.6+ 3‘3{«‘/ /" ] not resolve whether the former occurs at a higher plate sepa-
h rd \@\ b / 1 ration, implying a fluid-buckling transition, or at a lower
04} (AN e | forbidden 1 separation, implying a A-2[7 transition. The upper bound
I N\ 1A \ ] of the intervalh= \/1/2~0.71 is again obtained by plausible
o2l \%ﬂ\i \}\ | extrapolation to the lines of close packing. It should be em-
| fluid \X\ \ | phasized that the buckling crystal is only stable at values of
0 . . . . . . . h where it also constitutes the close-packed structure. As it
0.6 0.8 D 1 1.2 turns out, the order of the[2-b transition is an interesting
H

and very subtle question. For its investigation, we will con-
sider the finite-size dependence of the order-parameter fluc-

FIG. 4. Monte Carlo result for the phase diagram of hardtuations in Sec. IV B.
spheres of density, confined between parallel plates with separa-  (v) 2[0-r, 0.71<h<0.8. The data for phase transitions
tion distanceh: N=192 (+); 384,512(¢); 576 (A); and 1024, to the rhombic phase are gained by considering the behavior
1156 (). Solid lines are guides to the eye. Thin horizontal lines of the order parameters; see Sec. IV B. No anomalies in the
represent two-phase coexistence. See also Fig. 16. equation of state could be detected. The Monte Carlo runs

were performed at constapt; and varying plate separation
able. The close-packed states are shifted to infinite laterdl. By analogy we conclude that the order of thel2 tran-
pressures. Coexistence density intervals collapse onto linesition should be equal to the order of th&lzb transition.
The freezing transition is observed to appear around (vi) 200-2A, 0.8<h<0.86. A pronounced density
P=7-9. Detailed numerical data for all transitions arejump separates the[2 from the 2A phase.
given in Ref.[70]. Let us discuss some features of the tran-  (vii) 2A-r, 0.8<h<0.81. An almost horizontal X-r
sitions in more detail. coexistence region is observed.

(i) Fluid-1A, 0<h<0.57. Forh=0 we recover the (viii) Fluid-2A, 0.86<h<1. For the largest plate sepa-
first-order freezing transition of the hard disk fluid into one ration distances considered in this study, we find a strong
triangular crystal layer. The same phase transition also oddiscontinuous freezing transition to two crystalline layers.
curs for finite values ofi up toh=0.55. Thef-1A transition
vanishes ah=0.57 with a triple point {,1A,b). B. Order parameters ¥ ,,

(i) 1A-buckling, 0<h<0.57. In the samé interval as
thef-1A transition, we find that upon increasing the density
a structural phase transition occurs from one triangular lay
(1A) to the buckling phaseh(), which is stable up to close
packing. For values df close to zero the phase transition is N
shifted to high densities and disappearsHer0. Vo= N | W (a)|exdim argV(a)]), (25

(i) Fluid-20, 0.57<h<0.86. In the interval a=1
0.57<h<0.86 the fluid freezes into two square crystal layers
(200). Again the boundaries of the interval are gained by \I'n(a)EN;12 ex(in® ). (26)

B

In order to identify the emerging crystalline phases, we
eintroduce a set of double-indexed order parameiefs de-
fined via

Here ( ) denotes a canonical average, and the sum is over
N, neighbors of particlea possessing lateral distances
smaller than 1.2 and having opposite signs in tharcoor-
dinates,® ,; is the angle between the bond of particles
and B8 and an arbitrary axis.

The fluctuations of the order parameters are measured by
means of an order parameter susceptibility

an(N):N(<|\Pmn|2>_<|q,mn|>2) (27)

depending on the particle numbb It will be used to in-
vestigate the order of weak phase transitip§6,57 (see
also[71]).
Apart from free energy calculations, phase boundaries
also can be calculated from a knowledge of the dependence
FIG. 5. Same as Fig. 4, but using the lateral pressure instead i the order parameterd ;,, on the variablegp, andh. An
the density as the free thermodynamic variable. The reduced pregbrupt change in the order parameter signals a phase transi-
sure is given in units okgT. tion. This procedure proves useful in cases where there is no
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FIG. 6. Behavior of the order paramete¥s,, V,,, and¥,;in
three different phases (2, r, and 2A) vs h for p,=1.134. FIG. 8. Order parameter susceptibilipg, as a function of den-
sity py at plate separation distanbe=0.62. No divergence of the
significant anomaly in the equation of state observed, henc@aximal value as a function of particle numb¢ris observed.
for very weak first-order and second-order phase transitions.
We relied on that technique for the calculations of thedence ofy,, on py is linear, no divergence is encountered.
2A-r, 20-r, and Z1-b phase boundarigsee Fig. 8 Once  See Appendix B for a discussion of different ensembles.
the phase boundaries are determined, from knowledge of the Let us now examine the[2-b transition in detail, using
order parameter susceptibility,,, the order of the phase finite-size scaling of the order parameter susceptibility. For
transition can be concluded. The following two cases areghe investigation of the 2-b transition the quantityV,,
conceivable(i) If a phase transition wereontinuousin the  (m=2n=1) is useful, as it is larger than zero for “kite”-
thermodynamic limiN— o, diverging fluctuations would be shaped particle arrangemerffgesent in the zigzag or ran-
observed at the critical point, angy.(pn— pf")—. Of  dom buckling phaseand vanishes for the square configura-
course, diverging fluctuations are encountered only in thdions (exhibited typically in stackedD phases
thermodynamic limit, which is not directly accessible in  The order parameté¥,, is shown in Fig. 7 for fixed plate
computer simulations. Hence we study the dependence sfeparation distande=0.62 as a function of densifyy . The
Xmn ON the system sizdl, and look for an emerging singu- function¥,,(py) increases in a relative small density inter-
larity as the system becomes larg@i) In the discontinuous val p;=0.87—0.9 from a value close to zero to a finite value
case, where the correlation length remains finite, entering thef about 0.04. We find that the fluctuations on the low-
coexistence region would simply mix the susceptibilities ofdensity side vanish with a IN size dependence in the ther-
the coexisting phases according to the relative weight of botimodynamic limit N—c«. We thus conclude, that the[2
phase$(mn(pH)=)\an(p(Hl))+(1—A)an(p|(_|2)), where the phase is thermodynamically stable for low densities. In con-
superscripts 1 and 2 stand for the low- and high-density cotrast, on the high-density side, no decreas&gf as a func-
existing phases, ani=(p{/p) (pP—pi)1(pP—pP)  tion of particle numbeN is observed; from the date for
is the ratio of the number of particles in phase 1 to the totafinite-size systems we can conclude that a value significantly
number of particles in both phases. The functional depengreater than zero is reachedMs-. The buckling structure
with only twofold rotational symmetry is present. Hence a
phase transition occurs betweefnl2and b, signaled by a
- - ' . . rapid increase of the order parametp, as a function of
0.04} %fﬁfi ::T, et densitypy . As a function ofN, the increase is more rapid
| N=1152 ~g T e, | (with a larger sloppand is shifted toward higher densities.
N=4608 —— - In Fig. 8 the susceptibilityy,; as a function of density
r T pu is shown for the plate separation distarice 0.62. The
susceptibility has small values in the low-densityl hase
and in the high-density buckling phase. Between the pure

0.03

o

buckling 7

0.02 phase A

0.01F

0 ). 1 1 1
086 087 083 08909 091 092 "-"‘h Y
4 3 ; PRI ST Iy e,
R, SERT
. \\‘.‘}}'}’}:hl'ji:{:‘é,

FIG. 7. Behavior of the order paramet#t,; across Z1—the
buckling phase boundary at=0.62. FIG. 9. Fluid phasef(); h=0.9 andN=1056.



7234 MATTHIAS SCHMIDT AND HARTMUT LOWEN 55

[REESIR——
FIG. 10. One triangular crystal layer {1); h=0.2 and FIG. 12. Two square crystal layers [(; h=0.85 and
N=576. N=1056.

(i) Fluid phase ), Fig. 9. Neither translational nor ori-

phases a pronounced maximum occurs that can be int€gntational ordering is observed. The particles are located
preted in terms of fluctuations driving the system from onepreferentially near one of the walls.

phase to the other. In contrast to the finite-size dependence of (jj) One triangular crystal layer (1 phaseg, Fig. 10. At

the order parameter itself, its susceptibility shows only anigher density the system freezes into a lateral ordered lat-
weak dependence on system size. Although statistical errotge. The up-down symmetry is unbroken, the particles being
are present, there is no indication upNe-4608 of a diver-  randomly distributed ire coordinates.

gence in the thermodynamic limit. We thus conclude that the (iii) Buckling phaself), Fig. 11. Ordering in the direc-
phase transition between thé&l2and the buckling structure tion sets in: There are meandering lines of upper and lower
is of first order. The density jump is smaller than the resolu{articles. The lateral structure is a distorted lattice, and
tion of the simulationA p;=0.001. the perspective views are no longer equivalent. Symmetry
breaking occurs, the system now having only twofold rota-
tional symmetry.

. ; . (iv) Two square crystal layers (2 phase, Fig. 12. A
In the following we present snapshots of typical partlclefourfold rotational symmetry is recovered.

conf_igurations ge_nerat_ed by Monte Carlo simulation. The (v) Rhombic phaser(), Fig. 13. The structure is not only

par_tlcles are d_epmted n tW(.) d'ﬁere’?t shades to emphasmg distorted 21 lattice, but constitutes an individual phase.

their posmon_ in the_z_ direction: Partlcles frqm the upper Symmetry breaking has occurred, so that the two crystal di-

half-space_(wnh positive z coordinatep are light sh_aded, rections are no longer equivalent.

while .part|cles from the lower half-spadgvith negativez (vi) Two triangle crystal layers (& phase, Fig. 14. A

coordinatesare dark shaded. sixfold (threefold rotational symmetry is present. This struc-
In the sequence of plotd)—(14) each configuration is ture can be obtained by diffusive rearrangement of particles

shown four times: The main picture in the top left corner is afrom the () phase.

view perpendicular to the walls illustrating the lateral order.

Below it there is a side view which demonstrates the thick- V. FREE-VOLUME THEORY

ness of the confined system. On the right side of each figure . ) ]

two perspective views are shown, which are seen along the N this section we propose a simple theory for the con-

white arrows in the main picturéop left). The upper per- fined hard sphere system, consisting of a cgll m_odel.ap—

spective view corresponds to the left arrow, the bottom on@roach to the crystalline phases and an effective-disk diam-

to the right arrow. Both views are seen under an azimutha§t€’ approach based on the Born-Green-Yvon hierarchy to

angle of —15°. For the buckling I§) and the rhombic r() the confined fluid phase. Both approaches are subsumed un-

phasegFigs. 11 and 1Bthe two projections do differ quali- de!’ the term free_-volgme theory,_ as they.are charact_erlzed by

tatively, while they are similar for the more symmetric Stringent approximations to the m_terpartlclg correlatlpns and

phasegf, 1A, 201, and 2\). In all caseslefect-freeconfigu- focus on the free volume accessible to a single patrticle.

rations are chosen. Also, for plotting convenience, configu-

C. Typical configurations of six phases

rations with box aspect ratios away from unigquilateral A. Cell model for crystalline phases
were chosen. We now briefly discuss the typical features of The cell mode[72-75 exploits the physical picture of a
each configuration. solid, with particles localized around given lattice sites. It

FIG. 11. Buckling phaseh) ath=0.4 andN=576. FIG. 13. Rhombic phasey.
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FIG. 15. Lattice constants of the buckling structure.

szsl% 14. Two triangular crystal layer§2A); h=0.85 and P+Y0=+hd+b%+b2, (32)
2 2

enables one to determine the thermodynamically stable crys- P+ 1= ~hd+bi=b5+b,, (33

talline structure and its equation of state approximately. Fur-

thermore, it provides an exact upper bound on the free en- P 2= _hd_b§+b1+b2' (34)

ergy. The cell model has been applied in various contexts, 5 2

including glasse§76] and systems displaying rotational de- Py s=+hd=bi+Dby—by+by, (39

grees of freedom77,78. Despite the relative simplicity of ) )

the model, for the 3D hard sphere crystal the predicted equa- P_o=—hd=bi+b;—b5+b,, (36)

tion of state yields remarkable agreement with simulation,

especially at high densitieee also[79] for comparison P_1=-+hd—bf+b;+b5, (37)

with density-functional theory, anB0] for a discussion of

high-density properties, as well 481] for a similar ap- P_,=+hd+bi—b3+b,, (38

proach. Also in the context of confined hard spheres, some

solid-to-solid transitions have been calculaf@d] within the P_3=—hd+bi+b3. (39

cell model approach.

Applying the cell model to our system, we first impose aAs special cases, the result for two square layefsY2s
candidate lattice structure, given by a set of lattice site®btained by requiring equality of both lateral lattice con-
{R;}, compatible with the overall densifyy and plate sepa- stants,b;=Db,. For one triangular layer (4), the vertical
ration H. In general, this structure will depend on a set oflayer spacing is set to zerd € 0), and the ratio of the lateral
free geometric parametei®;({a;}), thea; being angles, ra- lattice constants is that of an equilateral triangle, hence
tios of lattice constants, etc. Second, the integration regimbe;=b,/3/2.
of each patrticle in the configurational integral is restricted A modification is done for the description of thé\Jphase
from the total volumeV to a smaller region in space around [72], where we inserted a different effective diameter
each lattice siteR;, called the free-volume ceN;. With  ¢%,=0\/1—h?/6 into the expression for the/L free vol-
vs being the spatial volume of one cell, the expressiorume in order to enlarge the free volume for two touching
—kgT In(vs/A®) provides an upper bound on the exactspheres with different coordinates. This is further justified
(Helmholtz free energy per particle. To optimize this bound, at the end of Sec. V B. For the rhombic and Jhases, we
we minimize it with respect to the set of free parametersely on a numerical strategy, details of which are given in
1aj}. Ref.[70].

The calculation of the free-volume cell involves tedious Both the analytical and numerical solutions for the free
elementary geometrical considerations. The volume of thenergy still depend on a set of free parameters. The buckling
cell has to be calculated for any given crystalline structurestructure depends on the ratio of lattice constantsa, and

Via elementary geometrical calculus we obtainaaralytical
expression for the free volume; for the 1A, b, and Z]
phases. It is given by

h+1[2 3
0il 0= gardl 2 O i~ 2 ®<x_,i>xi,i},
(28)
f=—kgTIn(v/A3), (29
vu=ppl=a;a,(1+h)/2, (30

where® denotes the Heaviside step function, and

Xo i=P. —bi+Db5+d2 (3D

We have defined scaled lattice constafts=a;/2 and

on the layer spacind. The rhombic structure depends also
ond and on the angle of the rhombus. To optimize the upper
bound on the free energy, we numerically maximize the free
volume v; with respect to the free lattice parameters. An
interesting point concerns the stability of the linear buckling
with respect to the zigzag buckling phase. Remember that
the former is built up from rectangles, while the latter is
composed of kites. A kite contains one additional degree of
freedom, namely, the position of the center on the symmetry
axis. It turns out that the maximal free volume for the kite is
attained if it equals the free volume of the rectangle. Thus
within the cell model both phases are equally stable, even
away from close packing.

B. Effective-diameter liquid theory

We now focus on the fluid state. For large plate separa-

b,=a,/2, andd is the scaled distance between the two layergions a theory was established using the Percus shielding

(d<h), see Fig. 15. The coefficient.. ; are given by

approximation [82], which can be solved analytically
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[83,84]. Here we present a theory that predicts the equatiomvhere the wall contact density is defined as

of state and the density profile of the confined hard sphere

fluid in the complementary regime of small plate separations. pw:=p(+h'12)=p(=h"/2). (45
The idea is to map the confined system onto well-knownOnce the densit file is Kk the lateral and t |

strictly two-dimensional hard disks with an effective particle Y profiie 1s known, the lateral and transversa

diametero™ . To determine the effective diameter, our start-Pressures can be computeste Appendix A via

ing point is the Born-Green-Yvo(BGY) hierarchy[85], ap- T (4h's 2+0

plied to an inhomogeneous situation with nonvanishing ex-  BII,;=pgt+ Wf , dz; p(Zl)f dz, p(z,)

ternal potential86]. In order to close the BGY hierarchy, we —hfz a-e

approximate the inhomoggnequs pair correlation function at X[ 02— (25— 21)219(21,25,07), (46)

contact by a constant, which is taken self-consistently from

the 2D hard disk equation of state, given within scaled- 7 (+n')2

particle theon[87,88. We present an analytical solution for Bllians pot Wj , dz; p(zy)

H< 20 as well as explicit expressions for the density profile —h2

and the equation of state. 21+0

Xf dz, p(22)(2,~21)%9(21.25,0).

-0

In a liquid exposed to a nonvanishing external potential
V oxd(1), the BGY hierarchy relates the single-particle density
p(r) to the pair distribution functiog(r,r’) as follows[86]: (47)

The ideal-gas contribution is
—kgTV Inp(r)=VVex(r)+f dr'p(r")g(r,r")VV(r,r’).

1 (+n'r2
(40 poi= | "z (2, 8
HereV(r,r') is the pair interaction potential ant=d/dr. In _ .
the case of hard spheres confined in a hard external potential Of course, the set of equatiof43), (46), and(47) is not
(which only takes on the values zero or infinitiq. (40) can  a closed one, as the inhomogeneous contact pair distribution
be written as d(z,z',0) is in general unknown. A closure approximation is

estabished by aaffective-diameter approximatiofirst, we

Vlnp(r)zcr‘lJ dr'p(r)g(r.r') Sgﬁlect the spatial dependence of the pair distribution func-
XO([r=r'|—a)(r—=r") if Vgor)=0, 9(poi21.22,0)~g* (po), (49)
(4D and second, we propose a self-consistent scheme for the de-
p(N=0 if Vgr)=o. (42) termination ofg* as a function of the thermodynamic vari-
ablep, as follows:
A simplification arises from the presence of thdunction We restrict ourselves to a narrow gap with<o. In this

on the right-hand side of E¢41), so that only the pair cor- regime, O_lue to t.he \_/ar_1iShing derjsity out.side the {an.
relationsg(r,r’) at contact i.e.,|r—r’|=oc enter in the de- (42)] the integration limits in the’ integral in Eq.(43) and

termination of the one-particle density distribution. in the z, integrals in Eqs.46) and (47) are significantly
In the case of parallel planar walls, due to symmetry, thesimplified to[ —h'/2,h'/2].
fluid density profile depends only on the coordinatger- The density profile can be calculated analytically via Eq.

pendicular to the wallsp(r)=p(z) while the pair distribu-  (43), which reads under the approximatit49)

tion depends on bothk coordinates and on the magnitude q

r=|r—r’|, henceg(r,r')=g(z,z’,r). In order to reduce the Bl —9 J'”"’Zd "o , — 7'} (50
notational effort, we define h'=ho,py=N/(Ah") dz Np(2)=2m —h'R2 z' p(z7)8(2,2,0)(z=2') (50
=h/(h+1)pyo 3, and pressuredl,=—(h') 19F/A,
andIlane= — A 19F/oh’.

- * +h'i2 , o
Transforming Eq(41) to cylindrical coordinates, we ob- 2mg* (po) f_hr,zdz p(2)(z=2")

tain the following exact nonlinear integrodifferential equa- (51
tion for the density profile:
=27g*(po)poh’z. (52)
d z+o
d_zlnp(z)zsz;, dz' p(2')9(z,2',0)(z=2'). (439  The solution is
Alternatively, Eq.(43) can be written in pure integral form, p(2)= pO_A?/ exd a(po)Z2], (53)
z
P(Z)=PW_27TJ dz; p(zy) / h'
2o N= 7T a(py) erfi(%) , (54)

XLl Udzz p(22)(2,—21)9(21,25,0), (44) a(po) = 7poh’ g* (po) (55



55 PHASE DIAGRAM OF HARD SPHERES CONFINED ... 7237

the imaginary error function is given by 1
erfi(z)=="Y2 [2,dZ exp'2. The lateral compressibility is I ]
obtained through Eq46), 08l |
Bl ™
=1+ —oah'a* o* 2’ 56 0.6t
o 5 Poh’g* (po)lo™ (po)] (56) P
0.4} .
* 2_ 2 h'/2 p(zl) r ]
=0 — dz;,—=
[0- (PO)] o J*h’/Z lpohr 021 4
e p(2) ) ol
X dZZT(Zl_ZZ) , (57
—h'/2 Po

where we have defined an effective diamet&r. It can be
calculated explicitly by inserting the density profile given by  FIG. 16. Cell theory result for the phase diagram of hard spheres

Egs.(53)—(55) into Eq. (57). The result is of densityp,, confined between parallel plates with separation dis-
tanceh. Six phases occuffluid, 1A, b, 20, r, and 2A.) The
' 2 closed-packed density is marked by a dashed line. Thin horizontal
[0*(po)?=0? + 1 — h exp:a(_po) h'/4] . lines represent two-phase coexistence, and dotted lines represent
a(po) 7 a(pg) efil Ja(py) h'/2] situations with three coexisting phases. To be compared with the
( MC simulation result shown in Fig. 4.

Having solved for the density profile, we are left with the o\ yme cell is a hexagonal prism the density profile is con-

problem of approximate determination of the functiongant with respect to the transvemseoordinate. Hence Eq.
g* (po). As a functional form forg* we use the expression (57) becomes

from 2D scaled-particle theofy87], which is in sufficiently
reasonable agreement with Monte Carlo d&9|

. 2l 2 hal2 hal2 B )
[0*(po)]°=0 dz, 2d22(21 z;)° (63

1_%77*(Po) —haol2 —hol.
* = . 59
A w12
g (pO) [1_77*([30)] ( ) -
o‘h
_ 2
The problem is thereby carried over to the determination of T (64)

an effective 2D packing fractiom* of the slab system de-

pendent on the average densjy. Comparing the lateral via this modification, the effect that two spheres with differ-

compressibility, Eq.(56), with the 2D virial theorem, we entz coordinates can come laterally closer than their hard
make the plausible assumption to build up a 2D paCking‘ophere diameter is taken into account.

fraction with the effective diameter*,
C. Phase diagram and discussion

n*(po):;pohf[g*(po)]a (60) In Fig. 16 the theoretical phase diagram of confined hard
spheres is presented. It is calculated using the cell model

_ _ . . description of the solid phases and the effective-diameter ap-

Inserting Eq.(60) into Eq. (59) yields, together with Eqs. prgximation for the liquid phase. The theoretical predictions

(55) and(58), the desired relation betweefi andpo; itisan  gre 1o be compared with the simulated phase diagram shown
implicit equation for the determination of the function Fig. 4.

g* (po)- The solution can be used to compute the excess free Tpq agreement fon=0 (hard disks is enforced by add-
energy via integration of the scaled-particle 2D compreSS|b|I-mgl the suitably chosen constadt= 1.8 to all solid entropies.

ity As all solid free energies are shifted by the same amount,
solid-solid coexistence is unaffected by the introduction of
po dpg the fitting constant.

Bfexpo)= fo W[Zsm(ﬁo')—l]’ (61) The shapes and the positions of th¢ A and 1A-b co-
existence regions are in pretty good agreement with the
simulations. Also the disappearance of th&-b region to-

1 ward the high-density limit af—0 is captured correctly.
[1—7*(po)]* However, for values 08h<0.72, a strongly first-order
fluid-buckling freezing transition appears, which does not
Let us finally justify the insertion of an effective diameter match the simulation. Also, the slope of the2[] coexist-
into the expression for the cell model result for thé\ 1 ence line is negative in cell theory, but is positive in simu-
phase. An effective 2D disk diameter is obtained through Eglation. (This implies ahigh-densitybuckling phase in coex-
(57) once the density profile is known. As theAlfree- istence with alow-density square phase in realijy.The

Zsp1(po) = (62
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L L L B ALy ML AN BB structures. In particular, the transition from two square crys-
WA N talline layers to the buckling structure was investigated in

] detail. Symmetry considerations cannot rule out a continuous
- transition, and no van der Waals loop could be resolved from
the equation of state. However, the order parameter fluctua-
tions measured by means of a susceptibility remain finite as
the phase transition is approached. This observation is con-
sistent with a first-order transition.

The data from computer simulations were compared with
Cbuckling -~ freg-volume theory, consi_sting of a cell model for_the crys-
" phase g talline states and a mapping based on the BGY hierarchy of

et Lo L b 0 L the fluid phase in slab geometry on an effective 2D hard disk
1.05 11 L1512 1.25 system. This approach is able to achieve striking similarities

H for the topology of the confined hard sphere phase diagram.

) Even a partial quantitative agreement was found. The density

FIG. 17. Enlargement of Fig. 16. The MC data are shown ag,mps are generally overestimated, but are of the correct or-
points. der. The prediction for the freezing transition grows worse
: . ... with increasing plate separation distance and the slopes of
density gap between thé 2and the buckling phase IS MINIS~ 55me solid-to-solid coexistence lines have the wrong sign. In
cgle, e:g"ApH:O'OOO 47 ath=0.72, co_mpat|_ble W'th. the these cases correlation effects must be considered in a more
simulation. The _agreement of the fde-s_ohd CoeX'Stencesophisticated way. The model can be generalized in different
grows worse a# increases further up to unity, as we map girections, a detailed discussion is given in Hé).
multilayer fluid onto a single-layer fluid. Thel2-r density As an outlook, it would be highly desirable to verify our
jump is overestimated, but the weakness of the-2transi-  heqretical predictions experimentally in samples of steri-

tion is predicted correctly. As in the case of hel tran- a1y stabilized or highly salted colloidal suspensions. Work
sition the slopes of the 2-r lines have the wrong sig(see along this line is in progres20].

a!sp the detailed plot in Fig. 17The relatiye extent of sta- Furthermore, it would be interesting to apply density-
bility of both close-packed phases,andr, is in agreement  ynctional theory of freezing to the confined hard sphere sys-
with MC data. In conclusion, while the topology of the phaseiem | particular, Rosenfeld’s hard sphere functiofed]

diagram is reproduced correctly, the overall agreement ighqoyid give relieable data in a situation between three and
only semiquantitative, since some details are not predicteg,q spatial dimension91,92.

085

0.8 rhombic -~

phase -~
<\ 7

0.75
forbidden

0.7 -7

correctly.
A final remark concerns three-phase coexistence: In the
2D and 3D bulk limits, the Gibbs phase rule permits two ACKNOWLEDGMENTS

coexisting phases, as there is only one free thermodynamic

variable, namely, the density. The existence of surfaces We thank H. Wagner, Y. Rosenfeld, A."Her, M. Prom-
changes this result, due to the additional freedom introduceterger, P. Leiderer, T. Palberg, S. Neser, A. Denton, and R.
by the transversal pressure. In the ensemble of prescribeiausch for helpful discussions. This work was supported by
wall separation distance the pure phases will in general exethe Deutsche Forschungsgemeinschaft within the Gerhard-
different pressures on the plates. Hence a state with thrddess Programm.

coexisting phases can be uniquely decomposed into the pure

phases if the average density and and transversal pressure are

known. APPENDIX A: PRESSURES

In the following an efficient means of calculating the lat-
eral and transversal pressures by computer simulation is pre-

In conclusion, we investigated the freezing transition insented. It is based on the relation of the pressure for hard
confining geometry focusing on the hard sphere model conparticles to the probability density of a successful infinitesi-
fined between parallel plates. We demonstrated that freezingal volume contraction of the whole system. We introduce
is drastically affected by confinement. Because of the inhothe concept of a system volume being scaled idirections
mogeneity, the uniqueness of theose-packedcrystalline by a factoré. Two different scalings of the system are con-
state is lost and a cascade of different solids compete for theidered: (i) scaling of the d=2 lateral directions,
thermodynamically stable state. The close-packed configurg£L,,£L, ,ho); and(ii) scaling of thed=1 transversal box
tions are also thermodynamically stable at lower densitietieight, (4,L,,£ého). The system volume isV(¢)
away from close packing, and nontrivial phase transforma= gdLXLyhg, whered=1 and 2. We define g-dependent
tions are encountered between phases where the particles aasnfigurational integral for hard spheres as
be very efficiently packed in space, and phases that exhibit
less efficient packing, but possess higher symmetries.

With Monte Carlo computer simulation we have shown
that, besides the strongly discontinuous freezing transition of Q ):i dr f dr H O(|r—r|—o).
the confined fluid, there occur both very weak and strong N! Jvie ! V(&) Ni<j )
first-order phase transitions between different crystalline (A2)

VI. CONCLUSION
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Note that the Boltzmann factor for hard spheres can be writ- h  BPuans 1
ten as a product of Heaviside functiofs. For é=1 we hl o =1+N kzl O(&— Euranskl)
recover the usual configurational integral. H £=1
Now the pressure can be expressed as a derivative with (A11)

respect tg, namely, The ideal gas contribution to the total pressure is given by

the summand 1 after the equality signs. During the Monte
dInQ . ; )
= (A2) Carlo simulation the canonical averages are calculated for

IV £<1 and then extrapolated;— 1. It should be noted that the
1 9Q(8)( aV(&)| L procedure is mainly important for the lateral case, as the
:[__<_> } transversal pressure can readily be calculated via the wall
Q ¢ Z3 -1 theorem[38].
(A3) Concerning the fluid free-volume theory, Eq46) and

(47) are derived from Eq(A5) by noting that, at contact,

To calculatedQ/9¢ we rewrite Eq.(Al), Ir 1l =, for the lateral case

1 2 2
=__¢Nd dr,--- d " O(Ir; -0), d 0°—(2,—2,)
Q) NI 3 fV(l) s JV(l) rNiE[j (|r|1(§)| o) (9_§|r12(§)| :+ (A12)
(A4) £=1
wherer;;(£)=r;(£)—r;(¢), and scaled coordinates are used:and for transversal cases
(D) ri(&)=(&xi,€yi,z), and(ii) ri(&)=(xi,Yi £€z). J (21— 2,)?
Then the derivative is = s A13
Iriz(é) ) (A13)
9¢é =1 o
R _Nagigr [ g d
e &7 Q N e vy N is obeyed.
| ra(é)] APPENDIX B: PRESSURE ENSEMBLE

><k2I A|r(&)|—al [ ICGIEE)
< i<j

9

The discussion in Sec. IV B makes use of the canonical
(A5) ensemble IVT). One encounters different behavior of the

) o susceptibility for discontinuous and continuous phase transi-
the prime at the product symbol denotes omission of the paifions in the pressure ensemblidif,T) and in the grand

(k,1). We further calculate canonical ensembleu(VT). Moreover, in each of the en-
1 90 Ara ()l sembles apart from the natural variables, the susceptibility
[— —} =Nd+ < > Slra(é)]— ol — > can be regarded as a function of the conjugated variable, e.g.,
Qatl,_, = & |, in (NVT) as a function of the pressupg,. We focus on the

(AB) (NpsiT) case, the grand canonical case being similar.
The pressure ensemble is related to the constant volume

=Nd+ < k2<| S(&— §)> ’ (A7) ensemble via the Laplace transform
é=1

(Play) _ (V) = BlpaV—F(V)]
where¢,, is defined through (&) = o. Distinguishing be- Xmn' (Prad) f dVxma(V)e t - D

tween the laterald=2), and the transversal casg=1) we ) N )
obtain the rescaling factors that bring the particles in contacfOr @ continuous phase transition, the common case is a

with each other, power-law divergence of both susceptibilities:
0'2_ ZEI vz X#.)Lat)( plat) * | Plat— pcrit| I (BZ)
Satki=\| 22| (A8)
Xia* Yii v -
Xmn(Pr) %[ pr—perid (B3)
o? = (X +Ya) | V2
§transk|=(_ ZE| ' (A9) with positive critical exponentsr and «’. For the discon-
tinuous case, the behavior of both quantities differs markedly
and, using EqstA7) and(A3), we obtain (o , .
5o 11 X (P = (pif = pit) 8(Pia—Per),  (BA)
lat
=1+ —<— > 5(é- §|at,k|>> . (A10)
pr 2N e-1 Xi(pr) =M (P + (L= M xi(p).  (B5)
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